
Persona: An Architecture for Animated Agent Interfaces

David Kurlander
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052 USA

djk@microsoft.com

ABSTRACT
Several years ago we started a project called Persona, with
the goal of building a framework for animated,
conversational, agent-based interfaces. The project
stitched together state-of-the-art speech recognition and
natural language understanding components, with a 3D
animation and control system of our own design. The first
interface that we built with this framework was a 3D
animated parrot named "Peedy", that controlled a musical
jukebox. Users could ask Peedy to play various musical
selections, and Peedy would do his best to comply, while
engaging the user with entertaining sound and graphics.
Persona is an interface architecture, and Peedy was our first
test of that architecture. Certain aspects of Peedy worked
well, while other aspects were inadequate for the task.
However, we learned a significant amount by building
Peedy, which will influence future modifications to the
agent architecture. Lessons that we learned from building
Persona and Peedy will be useful to others building
animated, agent-based interfaces.

Keywords
Animated interfaces, intelligent interfaces, agents, natural
language, dialog modeling, creatures.

INTRODUCTION
Although computer interfaces are becoming easier to use,
they are still too complex and unnatural for many people.
Command line interfaces have largely given way to
graphical user interfaces, but both of these forms of
interfaces are languages that users need to learn.
Conversational interfaces, in which users talk to a
computer just as they would talk to a person, would be
accessible to far larger populations. Such interfaces could
be supplemented by a smoothly-animated graphical
representation, to give the sense that the user is speaking to
a real entity.
We have built such an agent-based interface, called
“Peedy”. Peedy is a three-dimensional computer-animated
parrot that responds to user commands. In order to build

Peedy, we first created an architecture for animated agent
interfaces. This architecture is called “Persona”, and Peedy
was the first agent-based interface built with
Persona [1]. Peedy also served as the first test of the
Persona architecture, and by building Peedy, we learned of
a number of things that worked very well and worked very
poorly in the Persona architecture. Here we document
some of the lessons that we learned with Peedy the Parrot
and the Persona architecture. Hopefully they will be useful
to others building agent-based interfaces.
In the next section, we list 11 lessons learned from the
Persona architecture, and the Peedy test-bed. Following
this, an additional section discusses various dialog
management requirements that would need to be met for
Peedy to perform acceptably under real use. These dialog
requirements were determined through Wizard of Oz
experiments, and will inform the design of future systems.

LESSONS LEARNED
We learned a number of things by building the Peedy
agent, about creating lifelike characters, about
implementing conversational interfaces, and about
deploying agents. This section describes many of these
lessons. Some were learned by making mistakes during the
project, others by evaluating what worked well. But all of
these lessons should be valuable to people building lifelike
character agents and conversational interfaces.

LESSON 1: Use professional designers and animators
Professional designers and character animators are skilled
at creating the semblance of life through animation. They
can create appealing characters that people enjoy. From the
very beginning of the project, we had a talented designer
and animator, Tim Skelly, develop the character of Peedy
the Parrot, and the ancillary characters used in our
interfaces. David Thiel, an experienced sound developer,
added to Peedy’s realism by manufacturing rich
soundscapes. Peedy the Parrot is shown in Figure 1, and a
demo of Peedy is available on the web at
http://www.research.microsoft.com/ui/djk/planner/djk_fg0.mov.

Figure 1: Peedy the Parrot

LESSON 2: The illusion is fragile
One of the reasons that professional designers and
animators are so important on a project like this, is that the
illusion of a living creature, produced through computer
animation, is so hard to maintain. At one point in our
project, we decided to give Peedy a voice by incorporating
a computerized text-to-speech engine into the Persona
system. Having a robotic voice for Peedy, destroyed the
illusion of a friendly cartoonish bird, and we had to replace
the speech synthesizer with recorded, sampled speech from
human voice talent. This restored the believability of
Peedy.
Similarly, when the frame rate was poor, we needed to
refine the graphics engine, so that the animation appeared
less computerized. Initially the audio in the Peedy system
was poorly synchronized with the video, which violated the
realism. This was later fixed.

LESSON 3: Add variety
In animation, part of the illusion of life is generated by
irregularly occurring and unpredictable behavior. If an
action occurs too regularly and predictably, it appears
robotic. For example, the action of Peedy blinking follows
a stochastic model, as does his head motions and glances
away from the user. If Peedy blinked every second, it
would look unnatural. Perlin [5] achieves a great deal of
realism in his character animations by having almost all of
his computer actors’ actions governed by layered stochastic
models.
Peedy’s various autonomous actions had a great degree of
variety and richness, in part due to simple stochastic
models. However, Peedy lacked variety on a larger scale.
As will be discussed later, Peedy could only perform a few
different functions, and understand only a small number of
requests. This lack of higher-level variety really limited
the utility of Peedy.
Furthermore, while Peedy’s lower-level actions had a great
degree of randomness, his higher level animations did not.
For example, there were only one or two ways, that Peedy

would animate adding another song to the play-list. This
made using Peedy repetitively tedious at best. The latter
problem could be improved by adding stochastic elements
and more variety throughout the animation.

LESSON 4: Agents can be engaging
Even though Peedy was not truly adequate as a musical
assistant, people enjoyed interacting with the prototype.
They found Peedy to be fun and novel, and seemed eager
to have this interface tied to a more functional application.
People that were not experienced with traditional interfaces
commented that they would enjoy using such an agent-
based interface. We were surprised ourselves at how
engaging the interface was, and the sense of presence and
believability that the agent evoked. Others have noted this
with different creature-based interfaces as well. The Catz
and Dogz computer desktop-based pets products have
proven popular [6], and more recently the Tamagotchi
wristwatch-based virtual creatures as well [2].

LESSON 5: Lifelike presence suggests lifelike
intelligence

Although having an agent with a lifelike presence is
appealing, it can also generate problems. For example,
since people could speak to Peedy, and Peedy would speak
back, they assumed that the system would understand
unconstrained natural language. This was far from the
truth. In fact, Peedy understood only about 30 sentences,
with variables for musical titles, artists, and genres. If
someone were placed in front of Peedy and handed the
microphone, there would be little chance that Peedy would
respond adequately to any request. This violates an
important principle of user interface design – that
functionality be discoverable.
We did take some steps to limit the assumption that people
would make of lifelike intelligence. First, instead of
creating a human agent, we created a parrot agent. Parrots,
though capable of talking, have little intelligence. We also
had Peedy make it clear to the user when he did not
understand an utterance.
In truth, it will be a number of years before conversational
interfaces are a reality. We distinguish between
conversational interfaces, in which the user participates in a
dialog exchange with the computer, similar to a dialog that
they might have with another person, from simple speech-
based interfaces, in which the computer recognizes isolated
words and phrases. Part of the challenge in building
conversational interfaces is dialog modeling, following and
contributing to the structure and state of the conversation.
After building Peedy, we did an experiment to find out
what dialog structures and features people would really
expect from a musical assistant. These are presented in the
latter half of this paper. However, no existing computer
interface can deal with all complex dialog management
issues. Due to the great potential of conversational
interfaces, this is an important area for research.

LESSON 6: Constrain the input as much as possible
Given the difficulty of building broad-coverage
conversational interfaces with today’s natural language
technology, it is important to constrain what the user might
say to the system as much as possible. Two different kinds
of input constraints can be helpful. The first is domain
constraints. The user needs to be told in advance what
topics the conversational interface can address. The second
is language constraints. The user often must be told what
words and constructions the system can understand. This
can be done in advance, or as part of the runtime interface.
In the latter case, acceptable words or constructions might
appear on the screen, or the agent itself might use words
and sentences that it understands, hoping that these will be
adopted by the user. Maulsby’s experiments suggest that
users do adopt language employed by a conversational
agent [4].

LESSON 7: Have tight integration between speech and
natural language
Speech recognition is the technology that maps audio
waveforms to words. Natural language recognition
attempts to assign meaning to collections of words. In
Persona, the speech and natural language recognition
components were weakly coupled. The output of the
speech recognition system went to the natural language
recognition system, and there was no reverse feedback.
This simplistic approach can produce mediocre results at
best.
In an ideal system, the speech recognition system would
adjust its probabilities according to hints from the natural
language system. These hints would ideally be dependent
upon the dialogue state. The natural language system
would make it clear which candidate word recognitions are
valid in the context of the likely sentence, and which are
not. Together with the speech recognition system, the
natural language component should help to identify
disfluencies in the utterances, and prune them out.

LESSON 8: Authoring animations can be extremely hard
In Persona, the animations are controlled by a state
machine. The state machine receives events from the
dialogue management system (itself a state machine),
triggering possible animations, and possibly transitioning
the state machine to a new state. However, authoring such
state machines can be extremely difficult.
For the first implementation of Peedy, we authored these
state machines by hand, and learned first-hand how
difficult it was. Fixing a bug in one part of the machine
often caused new problems elsewhere. We needed a
mechanism for making the state machine easier to specify
and more manageable.
Later we developed a means of specifying the animation
using a planning-based approach. However, traditional AI-
type planning can be too slow for real-time animation with
precise timing requirements, so we developed a method for
pre-compiling these planning-based specifications into a

state machines that can be quickly executed in real-time.
The planning-based animation specification takes the form
of a set of operators with preconditions and postconditions,
and a set of goal states to be achieved when a given
graphics controller event is received. Using the planning
approach, it was far easier to specify animation state
machines, and the specifications were smaller and simpler.
A complete description of the planning-based animation
specification appears in a [3].

LESSON 9: Database applications are challenging
The musical assistant domain that we chose for our Peedy
prototype was a database application. The program
consulted a database of musical selections that Peedy could
play. The database contained the titles, performers, genres,
and durations of the music, among other information.
Theoretically, the application should be extensible – simply
add a new song or compact disc to the database, and Peedy
should be able to play and answer questions about the new
music.
However things were not that simple in practice. The
speech system required that it be given the precise
phonetics of every word that it could recognize. So artist
names, song titles, and album names had to be encoded into
a special phonetics language. Hence anybody adding new
music to the system had to be taught the phonetics
encoding.
On the output side, recall that we chose to use sampled
speech so that Peedy’s voice would not appear robotic.
The sampled speech was in the form of words and phrases
that were stitched together at runtime. Since Peedy needed
to be able talk about the artists, song titles, and album
names, every time that we added new music to the system,
we had to have the voice talent participate in another
recording session. The problem was exacerbated by the
fact that the additional speech output samples and phonetic
encodings were not stored in the central music database,
but in other data stores.
These same problems would be encountered in nearly any
database application. By choosing a non-database
application for Peedy, we could have made our jobs much
simpler, and our system much more easily extensible.

LESSON 10: Successful systems will be built by cross-
disciplinary teams
On the Peedy project, we had animators, sound designers,
user interface researchers, graphics experts, and software
developers all working together to make a compelling
agent-based interface. Without any one of these
specialists, the project would have suffered and the quality
of the system would be less than what it was.
If we were to do this again, it would be helpful to have
specialists in speech recognition, natural language, and
machine learning participating as part of the project too.
Although we did work with such specialists and used
general-purpose components that they had built previously,

it would have been helpful to have these specialists
working side-by-side with us, on a moment by moment
basis, helping to specialize their components for our
domain, and making their components interoperate better
with each other and with the Persona architecture.

LESSON 11: Use your system for real work, and
distribute system to others
In building novel technologies, such as animated,
conversational agents, it is important to use the technology
every day, see what needs to be fixed or improved upon,
and address that. The Peedy system was highly ambitious,
and attempted to put a number of very novel components
together in a working system. We succeeded at creating a
vision for future interfaces, that pointed out numerous
technologies that needed to be better integrated and
developed further. However, we did not succeed at
building an interface that any of us could realistically use
on a daily basis. Without constant use, certain deficiencies
are never addressed.
Furthermore, such systems should be distributed to others
to use. This would have been difficult with Peedy, since it
required several machines, including a costly graphics
workstation, to be networked together, dedicated to
running the Persona architecture. However, distributing
Peedy would have given more people a sense of the
promise of such animated, conversational agents, and the
challenges that need to be solved in order to make these
agents a reality. The lesson that research systems should
be used for real work and distributed to others, applies not
only to agent-based interfaces, but to all software research.

DIALOG MANAGEMENT
As mentioned in the last section, one of the great
challenges in creating conversational interfaces is building
a dialog management component that interprets the user’s
statements appropriately in the current context, and guides
the user in a productive direction through additional dialog.
One of the lessons that we learned in building Persona and
Peedy is how hard this really is.
Persona has a simple dialog management system, designed
as a state machine. Whenever the user made a statement to
an agent built with Persona, the system would evaluate the
statement in the context of the current dialog state, and
choose a subsequent state for the dialog manager.
The dialog state machine that we built for Peedy was
extremely simple, and not at all robust enough for
unconstrained conversation. Yet users of Peedy had no
means for determining the limits of Peedy’s conversational
ability, and constantly encountered its limits.
Later, in order to help us scope out necessary revisions to
Peedy’s dialog model, we performed a set of ten Wizard of
Oz studies, where real people interacted with another
person taking on the role of an automated musical assistant.
Wizard of Oz experiments are frequently used in the field

of human-computer interaction, since they allow system
designers to spec out the necessary capabilities of an
interface, without going to the trouble of actually building
a real system [4].
By analyzing the transcripts, we identified eight different
types of dialog challenges that we feel a truly compelling
conversational agent-based interface would have to address
in some way. In this section, we describe these dialog
challenges, and give examples from real human subjects
and testers in our musical assistant Wizard of Oz mock-up.
Lines of dialog preceded by “A” are from the human
assistant, and lines of dialog beginning with an “S” are
from the human subject.
Challenge 1: Handling complex conversational features,
like repetition, simultaneous speech, irrelevant utterances,
and utterances intended for someone else.
Often if the musical assistant did not respond quickly
enough, the subject repeated a request. The assistant needs
to be smart enough not to respond multiple times. An
example of this is below.

S: What do you have?
S: What do you have?
A: We have Luka Bloom, we have Nancy Griffith.

In other cases, the subject and the assistant spoke at the
same time. Typically, the subject interrupted the assistant
as in the example below.

A: There's also Miracle Man, No Dancing, Blame
it on Caine, Alison, Sneaky...

S: Oh, I'd like to hear Alison.
A: ...Feelings. OK.

For an agent, it is important to be able to detect an
interruption, and act upon the request.
In some cases, the subject made utterances not intended for
the musical assistant at all. In one case, the subject, while
listening to music, made comments relating to a recent
news event. The agent-based interface should be able to
distinguish comments directed towards it from comments
directed to someone else.
Even comments directed towards the assistant were
occasionally irrelevant with respect to its task, and
computer agents, like human agents, should be able to
handle this.

A: Would you like to hear the Ray Charles
version?

S: Yes I would actually.
A: One moment.
S: It’s funny, since I was just reading about Ray

Charles. (Subject holds up the newspaper.)
In the exchange above, the final comment is irrelevant to
the agent’s task of playing the Ray Charles music, but the
assistant hears it anyway. A good dialog agent would be
able to detect such situations and not let it affect its actions
inappropriately.

Challenge 2: Inaudible speech
People can tell when they are unable to hear a word that is
said. Computers have more trouble with this. The problem
of inaudible speech is particularly tricky for a music
assistant, in that the assistant must be able to hear the user
through the music, which not only can mask the words, but
also create an ambiguity over what was said by the user
and what was sung by a vocalist.
The Peedy system partially dealt with this problem by
using a directional microphone with a push-to-talk button.
Thus the user could explicitly express when they were
making a statement for the agent, and the music did not
interfere very much with Peedy’s speech recognition
capabilities. When Peedy could not recognize a request
with a reasonable confidence, it would say “Huh?” to
prompt the user again. However, Peedy still made
recognition errors.
Challenge 3: Understanding corrections, including the
user misspeaking, making an incorrect statement, or
changing his or her mind.
People frequently make mistakes in their own utterances,
and sometimes correct these mistakes themselves. A good
conversational agent would be able to handle these
mistakes, and recover from them in a natural manner. In
the example below, the subject corrects a misconception of
the assistant. The assistant made an incorrect assumption
in reaction to the subject’s first response, and the subject
finally corrects the assistant.

A: Would you like to hear something else from the
same album or are you interested in other
female vocalists from a different album?

S: Yes.
A: We have a different version of Summertime,

with a different singer, on the Porgy and Bess
CD.

S: Oh, no, I meant I’d like to hear more by Ella
Fitzgerald.

However, users can also make mistakes that need to be
corrected by the agent. An example of this is in the
exchange below:

A: Would you like to hear something else from the
same album?

S: Eh, yes. Ride On.
A: I’m sorry but that’s not on this album.

In a third kind of correction, the subject made a self-
correction.

S: What other classical… No, I’m sorry, what
other classic rock do you have?

When presented with such an utterance, a good
conversational assistant would be able to understand the
correction, and act only upon the user’s final request.
Challenge 4: Different world models

Several conversational challenges occur when the parties
participating in the conversation have different world
models. One type of model mismatch is when the user’s
classifications don’t match those of the interface. For
example, in one Wizard of Oz experiment, the subject
expressed surprise upon learning that k.d. lang was
classified as a country singer (in addition to being a
member of other genres too).
The participant’s expectations of how to interact with the
assistant can also differ from the assistant’s true interaction
model. This is apparent in the following dialog from our
Wizard of Oz study:

A: OK, would you like to hear another rock
album?

S: Yes, please.
A: <long pause> Would you suggest one?
S: Sorry, I thought you were going to give me a

choice.
In the exchange above, the subject expected to be presented
with a list of rock albums, while the agent waited for the
subject to present a particular request. Human beings can
easily recover from such mismatched expectations, and
such flexibility needs to be incorporated into agent-based
interfaces too.

When the user ignores the current dialog state, and asks a
totally different question, this is another case of differing
world models. In the example below, the subject ignored
the assistant’s question in posing his final request:

S: You know, I’m in the mood for something else.
A: What genre?
S: Do you have anything by the Eagles?

If an agent-based interface is to handle such interactions, it
needs to be able to transcend its momentary expectations,
and recognize a reasonable request at any time.

Another way in which the subject’s world model may
differ from the assistant’s is in the belief of whether the
constraints established earlier by the subject still hold. This
is evidenced in the exchange below:

S: OK, anything from the 40’s or 50’s?
A: We have… (many selections listed)
S: Do you have anything by women?
A: Certainly. In the 40s and 50s?
S: Uh.

Here, the assistant was not sure whether or not the earlier
request for music from the 40’s or 50’s also applies to the
subsequent request for music from female artists. In this
case, the subject seemed to be confused about this too!

There are many other cases where the world models of the
subject and assistant could differ, leading to dialog
difficulties. For example, sometimes the subject thought
there was a unique response to its request when there was
not (for example, when there were multiple recordings of a

particular title). Other times the subject made a request that
was outside of the capabilities of the assistant. Human
assistants are good at resolving the different world models
through additional dialog. Good agents should be capable
of this as well.

Challenge 5: Ambiguities
Frequently, ambiguities in the subjects’ utterances needed
to be resolved. For example, one subject asked to fast-
forward beyond “this part”, but the assistant did not know
whether “this part” referred to part of the song or the entire
song. In some cases, a participant requested a title that was
both the name of a song and the name of an album. It was
unclear to the assistant which should be played, but the
human assistant resolved this ambiguity by asking an
additional question. One of our favorite exchanges in the
experiment appears below.

A: OK, <pause>, we have Peter Gabriel.
S: So?

Here, the subject’s response to the assistant’s statement
could be construed in two ways: as perhaps a statement of
disinterest in Peter Gabriel’s music, or a query about a
particular album (the album, So.). Here, the latter
interpretation was accurate, but fortunately the assistant,
through further conversation could disambiguate this.

Numerous other ambiguities were found in the Wizard of
Oz dialogs. One person requested music from Chicago.
He was talking about the city rather than the band. The
musical domain is so challenging in part because band
names and song titles can be just about anything. In the
dialog below, the song title could have been a point of
confusion.

S: Um...I'd like to hear...uh, I, uh...America? I like
it here in America?

A: One moment.
Here the user was requesting a song from West Side Story
(“I Like It Here in America”), and given the context that
West Side Story was mentioned earlier in the conversation,
the assistant knew what the subject really wanted.
However, without any domain knowledge or context, the
subject’s utterance could have been interpreted as a simple
statement. Of course, building this kind of common sense
into computers is a grand challenge.

Challenge 6: Non-verbal information

People communicate with each other verbally, but they also
communicate with each other without words. In our
experiment, subjects sometimes communicated with the
assistant (who was behind a one way mirror) by shaking
their head or nodding, and by giving proposed selections a
thumbs-down or thumbs-up. One participant used non-
verbal information in the following exchange:

A: We have a very good album, Ella Fitzgerald
Live. We have Stan Getz. We've got Miles
Davis…

S: Mmmm, mmmm! <and gestures>
A: Miles Davis?
S: Yes, please.

Here, the subject grunted and pointed in response to
hearing Miles Davis’ name. In this case, the grunting and
pointing was due to the subject having a mouth full of
soda. But a human assistant was able to interpret the odd
form of communication correctly, and when the subject
was queried, he verified this to be so.

Most forms of non-verbal communication exhibited in the
experiments suggest that computer vision must be an
important capability of future conversational agents, if such
agents will truly mimic human communications.

Challenge 7: Disfluencies and ungrammatical utterances

Spoken speech is often not entirely grammatical, and hence
can be harder to understand than written language. People
often litter their speech with “uh”s and “um”s, which can
be difficult for speech recognition software to recognize as
being distinct from more meaningful words in a sentence.

Often people will put false starts in their speech, which are
the beginnings of utterances that remain uncompleted, and
are overridden by the remainder of the sentence. Examples
of this appear in the first and last utterances below.

S: Put on the last one, and then … and then let …
surprise me with two more things.

A: One moment.
S: This sounds like the last one. What’s this?
A: I thought you asked for the last one.
S: Oh. No. I wanted to … I wanted you to just

make a list, and I wanted you to play
something new.

Here the false start actually led to a misunderstanding on
the part of the assistant. The subject intended to correct his
false start, and ask for two surprise musical selections.
However, the assistant did not realize that the subject was
correcting or altering his request in the middle.

Occasionally the words that the subjects strung together
were totally ungrammatical. Yet, in most cases the human
assistant was intelligent enough to understand the intended
meaning, or through additional dialog with the subject,
determine what the subject was requesting.

S: Do you have... uh.. it's the new age song.
George Winston. uh, I forget the name of it.

The request above is highly ungrammatical, yet it did not
bring a halt to the dialog, and the assistant was able to
continue to help the subject with his musical requests.

Challenge 8: Partial information
Often the subjects did not provide all of the information
necessary to satisfy their requests – at least not initially. It
is the assistant’s job to find out the rest of the information
through additional dialog. In the case of conversational
interfaces, the dialog manager component must determine
which information is missing, and through conversation,
fill in the additional pieces.

S: Ummm I think I'm in the mood for something
classical.

A: OK, anything in particular?
In the dialog above, the user requests some classical music,
but the assistant has numerous classical pieces that he
could play. So, the assistant prompts for a particular
selection.

This particular pattern of receiving partial information, and
turning it into a complete request, is one of the most
necessary skills of a conversational interface. Over and
over again in our Wizard of Oz experiments we saw the
subject and the assistant working together to piece together
a complete musical request.

S: Well, I'd like to hear umm that song that was
from the Beatles. That Joe Cocker sang.

A: Which song?
S: Let's see. He sang more than one? Which

songs did he sing that were by the Beatles?
Was there another one?

A: She Came in through the Bathroom Window,
and With a Little Help from My Friends.

S: Oh, yeah, She Came in through the Bathroom
Window.

In the above dialog, the subject thinks he is asking for a
specific song. The assistant knows that multiple songs
satisfy the request, and works with the subject in order to
track down the desired one.

In this section we discussed eight challenges for dialog
management, as determined from Wizard of Oz
experiments with human subjects and assistants. Although
the experiments were in the domain of music selection,
these challenges are universal problems for dialog
management in conversational interfaces. While the Peedy
prototype did have limited support for resolving inaudible
speech, and handling partial information, its dialog
management was much too primitive for general use.
Dialog management is a difficult problem, and one of the
grand challenges in building conversational interfaces.
Progress in this area will enable a major step forward in
human-computer interaction.

ACKNOWLEDGMENTS
Tim Skelly created the character of Peedy, and through his
animation skills, brought Peedy to life. David Thiel gave
Peedy a voice and an audible environment. Gene Ball
designed much of the Persona architecture. David Pugh,
Andy Stankosky, and Maarten van Dantzich built Peedy’s
animation environment. Dan Ling directed the project.
Microsoft Research’s Natural Language Group and Speech
Recognition Group also contributed components and
expertise to the Persona system.

REFERENCES
1. Ball, G., Ling, D., Kurlander, D., Miller, J., Pugh, D.,

Skelly, T., Stankosky, A., Thiel, D., van Dantzich,
M., and Wax, T. Lifelike Computer Characters:
The Persona Project at Microsoft Research.
http://www.research.microsoft.com/ui/peedycha.doc.

2. Bandai Corporation. Tamagotchi.
http://www.bandai.com/tamagotchiaria.index.shtml.

3. Kurlander, D., and Ling, D.T. Planning-Based Control
of Interface Animation. CHI '95 Conference
Proceedings. May 1995. pp. 472-479.

4. Maulsby, D. The Turvy Experience: Simulating an
Instructible Interface. Chapter 11. In Watch What I Do:
Programming by Demonstration. Allen Cypher (ed.).
MIT Press. 1993.

5. Perlin, K., and Goldberg, A. Improv: A System for
Scripting Interactive Actors in Virtual Worlds. Proc.
SIGGRAPH ’96. pp. 205-216.

6. PF Magic. Welcome to Petz. http://www.petz.com.

