
1

To appear in Watch What I Do: Programming by Demonstration, Allen Cypher, ed., 1993.

Graphical Editing by Example
in CHIMERA

David Kurlander

450 Computer Science Building
Columbia University
New York, NY 10027

Human beings are great problem solvers, but find repetitive tasks tedious. In contrast,

computers usually must be taught how to perform new tasks, but then they can quickly

repeat the steps on new data. Given that a computer’s strength lies in its ability to perform

tasks repetitively, it is especially frustrating that many computer interfaces require the

people using them to repeat interaction steps many times to achieve their desired goals. By

building interfaces that can automate repeated interaction steps, we leverage off of the

strengths of computers to make these goals easier to attain.

This paper explores several new techniques to automate repetition in user interfaces.

Repetition in interfaces can be local to a particular session, or more global in scope and

span multiple sessions and possibly multiple users as well. Tasks repeated in multiple

sessions tend to be more general than tasks encountered in a single session. Accordingly,

global repetition often results when the interface lacks a command to address a commonly

useful function, while local repetition usually addresses a less general problem. The

techniques to be discussed here address both types of repetition. By incorporating new

techniques to automate repetition in an application, the programmer makes the application

more extensible. Extensibility is important in that it enables users to customize applica-

tions for tasks that they often perform, making them more efficient. Experienced users, or

2

those with a particular technical skill, can also encapsulate their knowledge in a form that

others might invoke, thereby benefitting the entire user population.

1 The Domain: Graphical Editing

Since repetition in user interfaces is often application-specific, we have chosen to focus

mainly on one particular domain: graphical editing. The techniques described here have

been developed for a 2D object-based illustration system, similar to MacDraw and Adobe

Illustrator, although some of these techniques apply to 3D editing and other domains as

well. Graphical editors are an apt focus for this research, since they can be used for many

different tasks, such as constructing technical illustrations, organizational charts, network

diagrams, flow charts, and architectural drawings. Since the editors have a multitude of

uses, there is a real need to allow individuals to customize the system for their particular

tasks.

Graphical editing also involves different types of repetition, making it a more interesting

target for this work. Often it is helpful to make repetitive changes to the shape or graphical

properties of a set of objects. Graphical editing tasks sometimes require that objects be

laid out in a repetitive fashion. The same geometric relationships may have to be estab-

lished several times in a single scene, or in multiple scenes. Certain geometric relation-

ships may need to be re-established whenever an object is manipulated. Arbitrary object

transformations or manipulations may need to be applied many times. The techniques

described here facilitate these types of repetition.

An assortment of other reasons make graphical editing an ideal domain for this research.

Since graphical editing is a common application, familiar to many people, the ideas

presented here hopefully will be of wide interest, and potentially be quite useful. By

choosing a domain with which other researchers have worked, I can compare and contrast

3

my approaches with those of others. Graphical editing is just one of many tasks that

involves placing artifacts on an electronic page. Other applications, such as page layout,

interface editing, and VLSI design have this as a component as well, and the techniques

described here are directly applicable to them. In fact, we have already used these

techniques to construct interfaces as well as illustrations.

2 Example-Based Techniques

In all of the new techniques presented here, the user indicates a desired repetition, at least

in part, by presenting an example. Hence, these methods are all example-based or demon-

strational techniques [Myers90], in which the user provides to the application an example

of the desired task, and the application uses this specification to perform similar tasks on

other examples.

Alternatively, the user could write a program to perform the desired repetition, but this has

several disadvantages. First, it requires that the user know how to program, and many

computer users lack this skill, particularly users of such basic, ubiquitous programs as

graphical editors. Second, even if the user does have programming experience, they may

be unfamiliar with the extension language or library interface of the editor. Third, the task

of programming is very different from the tasks performed in applications such as graphi-

cal editors, and switching to a programming mindset requires a mental context switch.

In contrast, using demonstrational techniques is much closer to using the native applica-

tion. Demonstrational techniques are accessible to anyone already possessing the skills to

use the application’s interface. Halbert, for example, describes one demonstrational

technique, programming by example, as programming an application through its own

interface [Halbert84]. Conventional programming skills are either not necessary or fewer

are needed. Demonstrational interfaces also have the advantage that abstractions are speci-

4

fied using concrete examples, so those people that have difficult working with abstractions

will probably find these interfaces easier to use..

However, the mapping from concrete examples to abstractions is often many-to-one, so

there must be a way of resolving this ambiguity. Demonstrational systems often deal with

this problem by using heuristics to choose the most likely mapping, or requiring that the

user explicitly choose a particular mapping. Also since few demonstrational techniques

are Turing equivalent, sometimes there are useful abstractions that cannot be specified

using this approach. Programming is still the easiest way to specify many complex exten-

sions, and will be so for the foreseeable future. However, there are many extensions that

can be expressed without programming, and the goal here is to identify classes of these

and develop new demonstrational techniques for expressing them.

3 CHIMERA

To test the ideas contained in this paper, I have built the CHIMERA editor system.

CHIMERA is actually an editor framework or substrate, in which other editors modes are

embedded. Three different editor modes are currently present in CHIMERA: modes for

editing graphics, interfaces, and text. The methods presented in the next section have been

implemented so that they work in both the graphics and interface modes. Both the graph-

ics and interface modes of CHIMERA are very complete, and have extensive coverage of

the primitives and commands one might want in such editors. The graphics mode of

CHIMERA can create and manipulate boxes, circles, ellipses, lines, text, arcs, beziers,

freehand curves, beta splines, and cardinal splines (cyclic and non-cyclic). The interface

mode can edit windows, command buttons, radio buttons (exclusive and non-exclusive),

menus, checkboxes, horizontal and vertical sliders, application canvases, scrollbars,

labels, scrolling lists, text controls, text editors, graphical editors, and mini-buffers. All of

5

CHIMERA’s interfaces were generated in CHIMERA. Both the graphics and interface

editing modes have around 180 commands (most of them shared).

4 Graphical Editing by Example

This section introduces five new example-based techniques to automate repetition in

graphical editor interactions. These techniques: graphical search and replace, constraint-

based search and replace, constraints from multiple snapshots, editable graphical histories,

and graphical macros by example, are briefly described in the subsequent subsections,

along with examples of their use. All figures were generated by the PostScript output of

CHIMERA, and each figure depicting a demonstration of a technique was generated by

the system running on a real example. A videotape is also available, showing an interac-

tive demonstration of these techniques in CHIMERA [Kurlander92a].

4.1 Graphical Search and Replace

Often shapes are repeated many times in a single illustration. Similarly, many illustrations

contain the same graphical attributes, such as particular fill colors or line styles, repeated

multiple times. When it becomes necessary to change one of these coherent properties, the

task can be very tedious since these modifications will need to be made throughout the

illustration. Graphical search and replace is a technique for automating tasks such as these.

Users of text editors have long been familiar with the utility of textual search and replace,

and graphical search and replace is intended to be its analogue in graphical editors.

Figure 1 shows a simple diagram of a computer network consisting of 18 terminals, a

magnetic tape device, a file server and a compute server. The network manager decides to

replace all of the conventional terminals with workstations, and wants to update the

diagram with as little effort as possible. One approach would be to delete each drawing of

6

a terminal and replace it with a drawing of a workstation, but this would be repetitious.

Another approach would be to use graphical search and replace.

CHIMERA’s graphical search and replace utility is called MatchTool 2, and it appears in

Figure 2. At the top of the window are two fully editable graphical canvases, in which

objects can be drawn or copied. The left pane contains the search objects and the right

pane contains the replacement objects. Unlike pure textual search and replace, there are

many attributes of graphical objects that can participate in queries and be modified by

replacements. For example, we might want to search only for objects of a particular object

class or having a certain line thickness, and replace these attributes or others. Below the

search and replace panes and to the left are rows of graphical attributes followed by check-

boxes. The first column of checkboxes specifies which attributes of the objects in the

search pane must be present in each match. During a replacement, the second column

specifies which attributes of the objects in the replace pane will be applied to the match.

<< >>

Figure 1 A network diagram drawn in CHIMERA.

7

Here we check nearly all the graphical attributes in the two columns since we want to

match and replace all of these properties, and then press the ChangeAll button. Figure 3

shows the resulting scene.

Since the search and replace panes contain example objects as part of the specification,

this technique is example-based. These single objects represent large sets of potential

matches and replacements, and the columns of checkboxes, which are explicitly set by the

user, indicate how these objects are to be generalized for the search and replace specifica-

tion. Note that these illustrations contain repetition in addition to the recurrence of termi-

nals or workstations. The same fill color is used in many of the boxes. We could make the

illustration darker or lighter with a few search and replace iterations. The drawers of the

filing cabinet, the files in the middle drawer, and triangular holes in the reels of tape, and

MatchTool II

Fetch Fit CP Fetch Fit CP

Properties Search Replace

Object class

Curve type

Shape

Fill color

Line color

Line width

Line dash

Line join

Line cap

Text string

Text font

Text tform

Yes No

ChangeAll

Search

Gran: Object-Level

Shape tol:

Rotation invariance:

Scale invariance:

Polarity:

Context sensitivity:

Constraints

Exclude match:

Permanence:

Fixed:

Set:

Permanent

Permanent

Figure 2 A MatchTool 2 window containing a search and replace specifica-
tion that changes drawings of terminals to workstations.

8

the button shapes on the tape recorder are all repeated shapes that can be altered easily

using graphical search and replace. In fact, graphical search and replace proved useful

here in increasing the diameter of all the polygons comprising the segments of the numeric

LCD display, since they were too narrow in a preliminary drawing. As discussed in

[Kurlander88], graphical search and replace is useful for a number of other applications,

such as producing repetitive shapes generated by graphical grammars, filling out graphical

templates, and searching for shapes in multiple files using a graphical grep utility.

4.2 Constraint-Based Search and Replace

Graphical search and replace, as presented in the last section, lacks an important capabil-

ity: it can be used to find and alter the complete shape of an object, but not individual

geometric relationships. If a search takes into account shape, every slope, angle, and

distance is significant. Similarly, when a shape-based replacement is performed, the

replacement receives its complete shape from the objects in the replace pane. However,

sometimes it is useful to search for objects that match a few specific geometric relation-

<< >>

Figure 3 The network diagram of Figure 1, after applying the graphical
search and replace specification of Figure 2. All terminals are replaced by
workstations.

9

ships, and change some of these relationships. For example, we might want to look for

lines that are nearly connected, and connect them. The angle between the lines is not

significant for the search, nor are the lengths. We also might want to leave some geometric

relationships unaltered, such as the positions of the remote endpoints of the lines. To

perform tasks such as this, an extension of graphical search and replace, called constraint-

based search and replace, is useful.

Constraint-based search and replace specifications can have constraints in the search and

replace patterns. Constraints in the search pattern indicate which relationships must be

present in each match, and those in the replacement pattern indicate which relationships

are to be established in the match and which are to remain unaltered. For example,

consider the aforementioned task of connecting nearly connected lines. The search and

replace panes for this task are shown in Figure 4, and contain graphical objects and

constraints as they are visually represented in CHIMERA. The search pane in Figure 4 (a)

contains two lines with endpoints joined by a 0 inch distance constraint. Note however

that these endpoints do not obey this constraint. The tolerance of the search is provided by

example -- all pairs of lines that have endpoints at least this close will match the pattern.

Search

0.0"

Replace

c*
0.0"

c*

Figure 4 Constraint-based search and replace pattern to connect nearly con-
nected lines. (a) the search pane; (b) the replace pane.

(a) (b)

10

The search pattern graphically shows how far off objects can be from the specified

relationships and still match.

The replacement pattern in Figure 4 (b) contains two different kinds of constraints. The

first constraint, the distance constraint that also appears in the search pane, indicates that

the lines are to be connected together by the replacement. However there are two other

constraints in the replace pane, marked by c*, that fix the remote vertices of the match at

their original locations when performing this change.

Figure 5 shows the result of applying this rule to a rough drawing of a W. All of the

segments in Figure 5 (a) are nearly connected, so they become precisely connected after

the replacement as shown in Figure 5 (b). Both graphical and constraint-based search and

replace rules can be collected in rule sets and archived. Rules can be applied to a static

scene, or can be expanded dynamically as the scene is drawn and edited. Constraint-based

search and replace provides a means to establish particular geometric relationships repeat-

edly in a graphical scene. As is discussed in [Kurlander 92], this technique can be used for

a variety of scene transformations, including illustration beautification.

Before After

Figure 5 Application of the new rule. (a) a scene before the replacements; (b)
the scene after the replacements.

(a) (b)

11

4.3 Constraints from Multiple Snapshots

As in the last example, constraint-based search and replace can be used to infer the

intended presence of certain constraints in a static scene. Often static scenes do not contain

enough information to infer all the desired geometric constraints. Since these constraints

govern the way objects move in relation to one another, it is often easier to infer the

presence of constraints by determining which relationships remain invariant as the scene

objects move. Another new technique, constraints from multiple snapshots, does just that.

Given several valid configurations or snapshots of a scene, this technique determines

which constraints are satisfied in all of them, and instantiates these. The initial snapshot

completely constrains the scene. Subsequent snapshots remove additional constraints from

the constraint set. Geometric constraints make graphical editing easier by automatically

maintaining desired geometric relationships between scene objects. However, it is often

very difficult for people using graphical editors to figure out all of the useful constraints

that need to be instantiated. This technique uses examples of valid scene configurations to

automatically determine these constraints.

For example, Figure 6a shows a drawing of a balance. After completing this initial

drawing, the user presses a button labeled “Snapshot”, to indicate this illustration is a valid

(a) (b)

Figure 6 Two snapshots of a balance. (a) initial snapshot; (b) subsequent
snapshot.

12

configuration of the scene. Next, the user rotates the arm of the balance on its axis, and

translates each of the trays so that they are still connected to the arms, to produce the illus-

tration shown in Figure 6b. They press the “Snapshot” button once more. The system

calculates and instantiates constraints that are present in each snapshot. For example, the

base remains fixed, the arm rotates about its axis, and the trays remain upright, and

connected to the arm. Up until now, all of the constraints inferred by the system have been

ignored during graphical editing, since constraint maintenance was turned off. The user

turns on constraints, and moves one end of the balance’s arm. The various components of

the balance automatically reconfigure as shown in figure 7, maintaining the inferred

geometric relationships.

After providing a few snapshots and manipulating scene objects, the user may find that the

system inferred unintended constraints that were present in all of the snapshots or that not

enough snapshots were given to break all the undesired constraints. If unwanted

constraints prevent scene objects from being moved into a desired configuration, the user

can always turn off constraints, move the objects into this new configuration and take

another snapshot. The new arrangement automatically becomes a valid configuration.

Figure 7 A third configuration of the balance, generated by the system, when
one end of the arm is moved.

13

By inferring constraints from multiple snapshots, CHIMERA provides an alternative form

of constraint specification to the traditional declarative method of explicitly instantiating

all the constraints in an illustration. Further examples of this form of constraint inferenc-

ing, as well as the algorithm that CHIMERA uses to infer constraints from multiple

snapshots, appear in [Kurlander91]. Having constraints in an illustration make it easier to

repeatedly alter scene elements, when geometric relationships between the objects need to

be maintained, so this technique, like the others discussed so far, addresses the problem of

reducing repetition in graphical editing tasks.

4.4 Editable Graphical Histories

Another approach to reduce repetition in many applications is to save all of the operations

as they are being performed and allow the user to select a set of these operations to reexe-

cute or redo. There are several approaches to selecting the operations to be redone. Some

applications limit redos to the last operation performed; others require that these opera-

tions be performed in a special recording mode. Other systems detect repetitions and

automatically extract out the repeated elements themselves [Cypher91]. Another approach

is to provide an understandable history representation from which the user selects opera-

tion sequences to redo.

Textual command histories are easy to represent -- the lines of text can be laid out one

after another sequentially. However, histories of applications in a graphical user interface

present a special challenge, since graphical properties such as colors and line styles must

be represented in a user-understandable fashion, and geometric characteristics such as

position become important to the interpretation of commands. Another of the techniques

discussed here, editable graphical histories, is a representation for commands in a graphi-

cal user interface.

14

Editable graphical histories use a comic strip metaphor to depict commands in a graphical

user interface. Commands are distributed over a set of panels that show the graphical state

of the interface changing over time. These histories use the same visual language as the

interface, so users of the application should understand them with little difficulty. For

example, consider the illustration of Figure 8a containing two boxes and an arrow. The

history generated during its construction is shown in Figure 9. Though Figure 9 appears to

include two history windows, the figure really shows two successive scrolls of a single

window.

(a) (b)

Figure 8 Two versions of a simple scene. (a) the original scene; (b) the scene
after the manipulations discussed in this section.

Graphical History

Text Input:

Gravity:

Grids:

Toggle-Grids - 1 Add-Box - 2

YellowText Input:

Set-Fill-Color - 2

8Text Input:

Set-Stroke-Width - 1

BlueText Input:

Set-Line-Color - 1 Add-Line - 2 Add-Line - 3

History Ops Editable: <----- ----->Gran: 0 1 2 3 4 5

Graphical History

Add-Box - 2 Drag - 3 Rotate - 3 Drag - 2

History Ops Editable: <----- ----->Gran: 0 1 2 3 4 5

Figure 9 Editable graphical history that generated Figure 8a.

15

The first panel depicts grids being turned on from the editor control panel. The name of the

command (Toggle-Grids) appears above the first panel, and the panel itself shows the

checkbox that was toggled to invoke the command. The second panel shows a box created

in the editor scene using the Add-Box command. In the third panel the box is selected, a

color (yellow) was typed into the Text Input widget, and the Set-Fill-Color command is

invoked. This panel is split to show parts of both the control panel and editor scene. The

next panels shows changes to the rectangle’s stroke width and line color, a line being

added beside the rectangle, and two lines being added above the first to create a

handdrawn arrowhead. The scrolled window below shows in its four panels a box being

added to the scene, the arrow being dragged to the box, the arrow being rotated so that its

base aligns with the first box, and finally the arrow’s base being stretched to reach the first

box.

Several strategies are employed to make the histories shorter and easier to understand.

Multiple related operations are coalesced in the same panel. For example, the third panel

contains two operations: one to select a scene object, and the other to change the fill color

of selected objects. Each panel’s label indicates the number off commands that it repre-

sents. We can expand high-level panels into lower-level ones and vice versa. This panel

expands into the first two shown in Figure 10a. So that the history panels will be less

cluttered, each panel shows only those objects that participate in its operations, plus

Traj-Select - 1

YellowText Input:

Set-Fill-Color - 1

8Text Input:

Set-Stroke-Width - 1

BlueText Input:

Set-Line-Color - 1 Add-Line - 3

(a) (b)

Figure 10 Using graphical histories to change a scene. (a) the three latter pan-
els selected for redo; (b) new operations added in place, in the history.

16

nearby scene context. Objects in the panels are rendered in a style according to their role

in the explanation. By default, CHIMERA subdues contextual objects by lightening their

colors, and objects that participate in the operations appear normally. In the first panel, the

grid checkbox and its label are important, and they stand out since all other control panel

widgets are subdued.

Editable graphical histories can be used to review the operations in a session, and to undo

or redo a sequence of these operations. For example, we would like to apply to the upper

rectangle the commands that set the fill color, stroke width, and line color of the lower

one. We select this rectangle, find the relevant panels in the history, and select them too.

These are the last three panels of Figure 10a, and panel selections are indicated by white

labels on a black background. Next we execute the Redo-Selected-Panels command, and

the top rectangle changes appropriately.

Editable graphical histories reduces repetition in CHIMERA by forming an interface to a

redo facility. CHIMERA also has a mechanism for inserting new commands at any point

in the history, which reduces repetition in a subtler manner. The histories can be made

editable, which replaces each static panel with a graphical editor canvas. The panels can

be edited and a command invoked to propagate these changes into the history. To insert

new commands in the middle of the history, the system undoes subsequent commands,

executes the new commands, and redoes the old ones. Since redo is being performed,

repetition is automated. As an example, we make the panels editable, and modify the last

panel of the first row of Figure 9 to draw a fancier arrowhead and change the width of the

arrow’s base. The new panel is shown in Figure 10b. We modify this history panel rather

than the editor scene directly, since at this point in time the arrow is still aligned with the

grid axes and later the change would be more difficult. After propagating these changes

17

into the history, a new scene results as shown in Figure 8b. [Kurlander90] contains a more

detailed treatment of this history representation..

4.5 Graphical Macros by Example

The basic redo operation discussed in the last section is limited in that it can only play

back commands verbatim. Command sequences executed in one application context often

lack the generality to perform the same high-level function in others. The process of

generating a procedure by demonstrating a task in an application is called programming by

example, and one of the major challenges involves generalizing the demonstrated

commands to work in different contexts. Another challenge is in providing a visual repre-

sentation of these programs. CHIMERA includes a programming by example or macro by

example component that uses editable graphical histories as its visual representation for

reviewing, editing, and generalizing the program, as well as reporting errors.

For example, consider an editing task in which we left-align two rectangles. The steps are

captured in the graphical history of Figure 11. Initially we create the two rectangles

(panels 1 and 2). Next we turn on 0 and 90 degree slope alignment lines (panels 3 and 4),

and select the upper left corner of the bottom rectangle (panel 5) and lower right corner of

the top rectangle (panel 6) to generate these lines. Finally we select the top rectangle, and

drag it until it snaps to the appropriate intersection of two alignment lines (panel 7).

Graphical History

Add-Box - 2 Add-Box - 2 /

0

Toggle-Slope - 1

90

Toggle-Slope - 1 Make-Normals-Hot - 2 Make-Normals-Hot - 2 Drag - 3

History Ops Editable: <----- ----->Gran: 0 1 2 3 4 5

Figure 11 Graphical history showing the creation of two rectangles, and the
left-alignment of the top rectangle with the bottom one.

18

At some later time we realize that these operations are generally useful, and decide to

encapsulate them in a macro. There is no need to repeat the operations in a special learning

mode. We scroll through the history, find the relevant panels, and execute a command to

turn them into a macro. Here we select all the panels, except those showing the Add-Box

commands, since we want the boxes to be arguments to the macro. A macro builder

window appears, containing the panels that were selected in the history window.

In the next step we choose the arguments of the macro. To do this we make the panels

editable which allows objects in the panels to be selected. We select an instance of each

argument, give it a name, and invoke the Make-Argument command. This appends

argument declaration panels at the beginning of the history. Here we select the lower left

rectangle from a panel, name it “fixed” since it doesn’t move, and execute Make-

Argument. We do the same for the other rectangle, but call it “moved” since this is the

rectangle that was translated. Figure 12 shows the resulting macro builder window, with

the argument declaration panels just created.

Next we execute a command that chooses default generalizations of all the commands,

according to built-in heuristics. Users can view and alter these generalizations. Finally we

choose to invoke this macro on another set of rectangles. A macro invocation window

appears, as shown in Figure 13 that allows us to set and view the arguments. We test this

Macro Builder

Make-Argument - 2 Make-Argument - 2 Toggle-Slope - 1 Toggle-Slope - 1 Make-Normals-Hot - 2 Make-Normals-Hot - 2 Drag - 3

movedText Input:fixedText Input:

90

/

0

Macro Ops Editable: <----- ----->Gran: 0 1 2 3 4 5

Figure 12 Macro builder window, containing a macro to left-align to rectangles.

19

macro on a sample scene, and it works as expected. A later chapter in this book discusses

the many ways that editable graphical histories support the macro definition process.

5 Synergy

The techniques discussed in the last section automate several different types of editor

repetition, and though they may at first seem unrelated, they actually fit together in a

coherent whole with synergistic relationships. Figure 14 is a graph with the five

techniques represented as nodes, and edges that indicate which components are related to

one another. The edges on the left show components that are currently related in

CHIMERA, and those on the right show other relationships that might be established in

the future.

Listed below are the existing relationships between the components:

■ Constraint-based search and replace is an extension to graphical search and replace
allowing geometric relationships to be sought and changed.

■ Constraint-based search and replace infers constraints from static scenes. Constraints
from multiple snapshots infers constraints from dynamic scenes, since static scenes
often contain insufficient information.

■ Editable graphical histories form the visual representation for CHIMERA’s macro by
example facility.

Left-Align Boxes

Apply

ShowSetmoved:

ShowSetfixed:fixed: Set Show

moved: Set Show

Apply

Figure 13 A macro invocation window.

20

■ Graphical search provides an iteration construct for macros by example. The system
can execute a macro for all objects fitting a given graphical description.

Listed next are relationships that could potentially link the the components:

■ Graphical search could be used by the system to find unique scene objects to serve as
landmarks in the graphical history panels. Graphical search and replace operations
could also be represented in the graphical history.

■ Constraint-based search and replace operations could be represented in the graphical
history.

■ Constraint-based search and replace could be used to define higher-level semantic
operations to be understood by the macro system. For example, using constraint-based
search and replace we can currently define a rule to bisect all nearly bisected angles.
When the system sees that an angle is being bisected using lower level commands, it
could then assume that one possible generalization of the command sequence is angle
bisection.

■ Constraint inferencing from multiple snapshots could be represented in the graphical
history.

■ Constraint inferencing from multiple snapshots could be used to find which constraints
are invariant during a graphical macro, and these invariants could be enforced.

Graphical Search
and Replace

Constraint-Based
Search and Replace

Constraints From
Multiple Snapshots

Editable Graphical
Histories

Macros by
Example

Realized Potential

Figure 14 Relationships between the five techniques. Edges on the left repre-
sent existing relationships, and those on the right potential relationships.

21

The relationships between the components are numerous, and interestingly Figure 14

would be a complete graph if it were not for the missing edge between graphical search

and replace and constraints from multiple snapshots. Those suggesting a plausible

relationship will earn my undying gratitude.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

